The entanglement entropy and the logarithmic negativity can be computed in quantum field theory through a method based on the replica limit. Performing these analytic continuations in some cases is beyond our current knowledge, even for simple models. We employ a numerical method based on rational interpolations to extrapolate the entanglement entropy of two disjoint intervals for the conformal field theories given by the free compact boson and the Ising model. The case of three disjoint intervals is studied for the Ising model and the non compact free massless boson. For the latter model, the logarithmic negativity of two disjoint intervals has been also considered. Some of our findings have been checked against existing numerical results obtained from the corresponding lattice models.

Entanglement entropy and negativity of disjoint intervals in CFT: Some numerical extrapolations / De Nobili, Cristiano; Coser, Andrea; Tonni, Erik. - In: JOURNAL OF STATISTICAL MECHANICS: THEORY AND EXPERIMENT. - ISSN 1742-5468. - 2015:6(2015), pp. 1-27. [10.1088/1742-5468/2015/06/P06021]

Entanglement entropy and negativity of disjoint intervals in CFT: Some numerical extrapolations

De Nobili, Cristiano;Coser, Andrea;Tonni, Erik
2015

Abstract

The entanglement entropy and the logarithmic negativity can be computed in quantum field theory through a method based on the replica limit. Performing these analytic continuations in some cases is beyond our current knowledge, even for simple models. We employ a numerical method based on rational interpolations to extrapolate the entanglement entropy of two disjoint intervals for the conformal field theories given by the free compact boson and the Ising model. The case of three disjoint intervals is studied for the Ising model and the non compact free massless boson. For the latter model, the logarithmic negativity of two disjoint intervals has been also considered. Some of our findings have been checked against existing numerical results obtained from the corresponding lattice models.
2015
6
1
27
P06021
https://doi.org/10.1088/1742-5468/2015/06/P06021
https://arxiv.org/abs/1501.04311
De Nobili, Cristiano; Coser, Andrea; Tonni, Erik
File in questo prodotto:
File Dimensione Formato  
De_Nobili_2015_J._Stat._Mech._2015_P06021.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1501.04311v1.pdf

accesso aperto

Descrizione: Preprint does not differ much from the accepted version
Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 4.31 MB
Formato Adobe PDF
4.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11767/32562
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 45
social impact