We present a rigorous derivation of dimensionally reduced theories for thin sheets of nematic elastomers, in the finite bending regime. Focusing on the case of twist nematic texture, we obtain 2D and 1D models for wide and narrow ribbons exhibiting spontaneous flexure and torsion. We also discuss some variants to the case of twist nematic texture, which lead to 2D models with different target curvature tensors. In particular, we analyse cases where the nematic texture leads to zero or positive Gaussian target curvature, and the case of bilayers. © 2017 Springer Science+Business Media Dordrecht

Dimension reduction via Gamma convergence for soft active materials / Agostiniani, Virginia; De Simone, Antonio. - In: MECCANICA. - ISSN 0025-6455. - 52:14(2017), pp. 3457-3470. [10.1007/s11012-017-0630-4]

Dimension reduction via Gamma convergence for soft active materials

Agostiniani, Virginia;De Simone, Antonio
2017-01-01

Abstract

We present a rigorous derivation of dimensionally reduced theories for thin sheets of nematic elastomers, in the finite bending regime. Focusing on the case of twist nematic texture, we obtain 2D and 1D models for wide and narrow ribbons exhibiting spontaneous flexure and torsion. We also discuss some variants to the case of twist nematic texture, which lead to 2D models with different target curvature tensors. In particular, we analyse cases where the nematic texture leads to zero or positive Gaussian target curvature, and the case of bilayers. © 2017 Springer Science+Business Media Dordrecht
2017
52
14
3457
3470
https://arxiv.org/abs/1702.00739
Agostiniani, Virginia; De Simone, Antonio
File in questo prodotto:
File Dimensione Formato  
s11012-017-0630-4.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 724.92 kB
Formato Adobe PDF
724.92 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Agostiniani_DeSimone_Meccanica.pdf

Open Access dal 16/02/2018

Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/32609
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact