We study the moments of the partial transpose of the reduced density matrix of two intervals for the free massless Dirac fermion. By means of a direct calculation based on a coherent state path integral, we find an analytic form for these moments in terms of the Riemann theta function. We show that moments of arbitrary order are equal to the same quantities for the compactified boson at the self-dual point. These equalities also imply the nontrivial result that the negativity of the free fermion and the self-dual boson are equal.
Towards the entanglement negativity of two disjoint intervals for a one dimensional free fermion / Coser, Andrea; Tonni, Erik; Calabrese, Pasquale. - In: JOURNAL OF STATISTICAL MECHANICS: THEORY AND EXPERIMENT. - ISSN 1742-5468. - 2016:3(2016), pp. 1-28. [10.1088/1742-5468/2016/03/033116]
Towards the entanglement negativity of two disjoint intervals for a one dimensional free fermion
Coser, Andrea;Tonni, Erik;Calabrese, Pasquale
2016-01-01
Abstract
We study the moments of the partial transpose of the reduced density matrix of two intervals for the free massless Dirac fermion. By means of a direct calculation based on a coherent state path integral, we find an analytic form for these moments in terms of the Riemann theta function. We show that moments of arbitrary order are equal to the same quantities for the compactified boson at the self-dual point. These equalities also imply the nontrivial result that the negativity of the free fermion and the self-dual boson are equal.File | Dimensione | Formato | |
---|---|---|---|
Coser_2016_J._Stat._Mech._2016_033116.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
1.31 MB
Formato
Adobe PDF
|
1.31 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1508.00811v1.pdf
accesso aperto
Descrizione: Preprint does not differ much from the accepted version
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
1.1 MB
Formato
Adobe PDF
|
1.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.