The description of the phase space of relativistic particles coupled to three-dimensional Einstein gravity requires momenta which are coordinates on a group manifold rather than on ordinary Minkowski space. The corresponding field theory turns out to be a non-commutative field theory on configuration space and a group field theory on momentum space. Using basic non-commutative Fourier transform tools we introduce the notion of non-commutative heat-kernel associated with the Laplacian on the non-commutative configuration space. We show that the spectral dimension associated to the non-commutative heat kernel varies with the scale reaching a non-integer value smaller than three for Planckian diffusion scales. (C) 2011 Published by Elsevier B.V.
Anomalous dimension in three-dimensional semiclassical gravity
ALESCI, Emanuele;
2012-01-01
Abstract
The description of the phase space of relativistic particles coupled to three-dimensional Einstein gravity requires momenta which are coordinates on a group manifold rather than on ordinary Minkowski space. The corresponding field theory turns out to be a non-commutative field theory on configuration space and a group field theory on momentum space. Using basic non-commutative Fourier transform tools we introduce the notion of non-commutative heat-kernel associated with the Laplacian on the non-commutative configuration space. We show that the spectral dimension associated to the non-commutative heat kernel varies with the scale reaching a non-integer value smaller than three for Planckian diffusion scales. (C) 2011 Published by Elsevier B.V.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.