Given a C^1 function H: ℝ^3 → ℝ, we look for H-bubbles, i.e., surfaces in ℝ^3 parametrized by the sphere S^2 with mean curvature H at every regular point. Here we study the case H(u)=H_0(u)+∈H_1(u) where H_0 is some "good" curvature (for which there exist H_ 0-bubbles with minimal energy, uniformly bounded in L^∞), ∈ is the smallness parameter, and H_1 is any C^1 function

Existence of H-bubbles in a perturbative setting

Musina, Roberta
2004-01-01

Abstract

Given a C^1 function H: ℝ^3 → ℝ, we look for H-bubbles, i.e., surfaces in ℝ^3 parametrized by the sphere S^2 with mean curvature H at every regular point. Here we study the case H(u)=H_0(u)+∈H_1(u) where H_0 is some "good" curvature (for which there exist H_ 0-bubbles with minimal energy, uniformly bounded in L^∞), ∈ is the smallness parameter, and H_1 is any C^1 function
2004
20
2
611
626
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.rmi/1087482028
Caldiroli, P; Musina, Roberta
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/32993
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 7
social impact