We consider a class of quasi-integrable Hamiltonian systems obtained by adding to a non-convex Hamiltonian function of an integrable system a perturbation depending only on the angle variables. We focus on a resonant maximal torus of the unperturbed system, foliated into a family of lower-dimensional tori of codimension 1, invariant under a quasi-periodic flow with rotation vector satisfying some mild Diophantine condition. We show that at least one lower-dimensional torus with that rotation vector always exists also for the perturbed system. The proof is based on multiscale analysis and resummation procedures of divergent series. A crucial role is played by suitable symmetries and cancellations, ultimately due to the Hamiltonian structure of the system. © 2013 Springer Science+Business Media New York.

Lower-Dimensional Invariant Tori for Perturbations of a Class of Non-convex Hamiltonian Functions

FEOLA, Roberto;
2013-01-01

Abstract

We consider a class of quasi-integrable Hamiltonian systems obtained by adding to a non-convex Hamiltonian function of an integrable system a perturbation depending only on the angle variables. We focus on a resonant maximal torus of the unperturbed system, foliated into a family of lower-dimensional tori of codimension 1, invariant under a quasi-periodic flow with rotation vector satisfying some mild Diophantine condition. We show that at least one lower-dimensional torus with that rotation vector always exists also for the perturbed system. The proof is based on multiscale analysis and resummation procedures of divergent series. A crucial role is played by suitable symmetries and cancellations, ultimately due to the Hamiltonian structure of the system. © 2013 Springer Science+Business Media New York.
2013
150
1
156
180
http://arxiv.org/abs/1209.2893
Livia, Corsi; Feola, Roberto; Guido, Gentile
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/33104
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact