Using properties of skew-Hamiltonian matrices and classic connectedness results, we prove that the moduli space M-ort(0) (r, n) of stable rank r orthogonal vector bundles on P-2, with Chem classes (c(1), c(2)) = (0, n) and trivial splitting on the general line, is smooth irreducible of dimension (r - 2)n - ((r)(2)) for r = n and n >= 4, and r = n - 1 and n >= 8. We speculate that the result holds in greater generality.
Orthogonal bundles and skew-Hamiltonian matrices / Abuaf, R.; Boralevi, Ada. - In: CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES. - ISSN 0008-414X. - 67:5(2015), pp. 961-989. [10.4153/CJM-2014-034-9]
Orthogonal bundles and skew-Hamiltonian matrices
Boralevi, Ada
2015-01-01
Abstract
Using properties of skew-Hamiltonian matrices and classic connectedness results, we prove that the moduli space M-ort(0) (r, n) of stable rank r orthogonal vector bundles on P-2, with Chem classes (c(1), c(2)) = (0, n) and trivial splitting on the general line, is smooth irreducible of dimension (r - 2)n - ((r)(2)) for r = n and n >= 4, and r = n - 1 and n >= 8. We speculate that the result holds in greater generality.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.