We compute the elliptic genera of general two-dimensional and gauge theories. We find that the elliptic genus is given by the sum of Jeffrey-Kirwan residues of a meromorphic form, representing the one-loop determinant of fields, on the moduli space of flat connections on T (2). We give several examples illustrating our formula, with both Abelian and non-Abelian gauge groups, and discuss some dualities for U(k) and SU(k) theories. This paper is a sequel to the authors' previous paper (Benini et al., Lett Math Phys 104:465-493, 2014).

Elliptic genera of 2d N=2 gauge theories / Benini, F.; Eager, R.; Hori, K.; Tachikawa, Y.. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 333:(2015), pp. 1241-1286. [10.1007/s00220-014-2210-y]

Elliptic genera of 2d N=2 gauge theories

Benini, F.
;
2015-01-01

Abstract

We compute the elliptic genera of general two-dimensional and gauge theories. We find that the elliptic genus is given by the sum of Jeffrey-Kirwan residues of a meromorphic form, representing the one-loop determinant of fields, on the moduli space of flat connections on T (2). We give several examples illustrating our formula, with both Abelian and non-Abelian gauge groups, and discuss some dualities for U(k) and SU(k) theories. This paper is a sequel to the authors' previous paper (Benini et al., Lett Math Phys 104:465-493, 2014).
2015
333
1241
1286
https://arxiv.org/abs/1308.4896
https://link.springer.com/article/10.1007/s00220-014-2210-y
Benini, F.; Eager, R.; Hori, K.; Tachikawa, Y.
File in questo prodotto:
File Dimensione Formato  
1308.4896.pdf

Open Access dal 04/11/2015

Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 542.62 kB
Formato Adobe PDF
542.62 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/33162
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 226
  • ???jsp.display-item.citation.isi??? 245
social impact