We provide a general formula for the partition function of three-dimensional (formula presented) gauge theories placed on S2 ×S1 with a topological twist along S2, which can be interpreted as an index for chiral states of the theories immersed in background magnetic fields. The result is expressed as a sum over magnetic fluxes of the residues of a meromorphic form which is a function of the scalar zero-modes. The partition function depends on a collection of background magnetic fluxes and fugacities for the global symmetries. We illustrate our formula in many examples of 3d Yang-Mills-Chern-Simons theories with matter, including Aharony and Giveon-Kutasov dualities. Finally, our formula generalizes to Ω-backgrounds, as well as two-dimensional theories on S2 and four-dimensional theories on S2 × T2. In particular this provides an alternative way to compute genus-zero A-model topological amplitudes and Gromov-Witten invariants.
A topologically twisted index for three-dimensional supersymmetric theories / Benini, Francesco; Zaffaroni, A.. - In: JOURNAL OF HIGH ENERGY PHYSICS. - ISSN 1029-8479. - 2015:7(2015), pp. 1-77. [10.1007/JHEP07(2015)127]
A topologically twisted index for three-dimensional supersymmetric theories
Benini, Francesco;
2015-01-01
Abstract
We provide a general formula for the partition function of three-dimensional (formula presented) gauge theories placed on S2 ×S1 with a topological twist along S2, which can be interpreted as an index for chiral states of the theories immersed in background magnetic fields. The result is expressed as a sum over magnetic fluxes of the residues of a meromorphic form which is a function of the scalar zero-modes. The partition function depends on a collection of background magnetic fluxes and fugacities for the global symmetries. We illustrate our formula in many examples of 3d Yang-Mills-Chern-Simons theories with matter, including Aharony and Giveon-Kutasov dualities. Finally, our formula generalizes to Ω-backgrounds, as well as two-dimensional theories on S2 and four-dimensional theories on S2 × T2. In particular this provides an alternative way to compute genus-zero A-model topological amplitudes and Gromov-Witten invariants.File | Dimensione | Formato | |
---|---|---|---|
art%3A10.1007%2FJHEP07%282015%29127.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.48 MB
Formato
Adobe PDF
|
1.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.