In this note we survey and compare the monotonicity formulas recently discovered by the authors in [1] and [2] in the context of classical potential theory and in the study of static metrics, respectively. In both cases we discuss the most significant implications of the monotonicity formulas in terms of sharp analytic and geometric inequalities. In particular, we derive the classical Willmore inequality for smooth compact hypersurfaces embedded in Euclidean space and the Riemannian Penrose inequality for static Black Holes with connected horizon.

Comparing monotonicity formulas for electrostatic potentials and static metrics

Agostiniani, Virginia;
2017-01-01

Abstract

In this note we survey and compare the monotonicity formulas recently discovered by the authors in [1] and [2] in the context of classical potential theory and in the study of static metrics, respectively. In both cases we discuss the most significant implications of the monotonicity formulas in terms of sharp analytic and geometric inequalities. In particular, we derive the classical Willmore inequality for smooth compact hypersurfaces embedded in Euclidean space and the Riemannian Penrose inequality for static Black Holes with connected horizon.
2017
28
1
7
20
Agostiniani, Virginia; Mazzieri, L.
File in questo prodotto:
File Dimensione Formato  
Agostiniani_Mazzieri_2017.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 121.42 kB
Formato Adobe PDF
121.42 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/33277
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact