We study the equilibrium and near-equilibrium properties of a holographic five-dimensional model consisting of Einstein gravity coupled to a scalar field with a non-trivial potential. The dual four-dimensional gauge theory is not conformal and, at zero temperature, exhibits a renormalisation group flow between two different fixed points. We quantify the deviations from conformality both in terms of thermodynamic observables and in terms of the bulk viscosity of the theory. The ratio of bulk over shear viscosity violates Buchel's bound. We study relaxation of small-amplitude, homogeneous perturbations by computing the quasi-normal modes of the system at zero spatial momentum. In this approximation we identify two different relaxation channels. At high temperatures, the different pressures first become approximately equal to one another, and subsequently this average pressure evolves towards the equilibrium value dictated by the equation of state. At low temperatures, the average pressure first evolves towards the equilibrium pressure, and only later the different pressures become approximately equal to one another.
Thermodynamics, transport and relaxation in non-conformal theories / Attems, Maximilian; Casalderrey Solana, Jorge; Mateos, David; Papadimitriou, Ioannis; Santos Oliván, Daniel; Sopuerta, Carlos F.; Triana, Miquel; Zilhão, Miguel. - In: JOURNAL OF HIGH ENERGY PHYSICS. - ISSN 1029-8479. - 2016:10(2016), pp. 1-28. [10.1007/JHEP10(2016)155]
Thermodynamics, transport and relaxation in non-conformal theories
Papadimitriou, Ioannis;
2016-01-01
Abstract
We study the equilibrium and near-equilibrium properties of a holographic five-dimensional model consisting of Einstein gravity coupled to a scalar field with a non-trivial potential. The dual four-dimensional gauge theory is not conformal and, at zero temperature, exhibits a renormalisation group flow between two different fixed points. We quantify the deviations from conformality both in terms of thermodynamic observables and in terms of the bulk viscosity of the theory. The ratio of bulk over shear viscosity violates Buchel's bound. We study relaxation of small-amplitude, homogeneous perturbations by computing the quasi-normal modes of the system at zero spatial momentum. In this approximation we identify two different relaxation channels. At high temperatures, the different pressures first become approximately equal to one another, and subsequently this average pressure evolves towards the equilibrium value dictated by the equation of state. At low temperatures, the average pressure first evolves towards the equilibrium pressure, and only later the different pressures become approximately equal to one another.File | Dimensione | Formato | |
---|---|---|---|
art%3A10.1007%2FJHEP10%282016%29155.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
755.35 kB
Formato
Adobe PDF
|
755.35 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.