Let (X, d) be a quasi-convex, complete and separable metric space with reference probability measure m. We prove that the set of real-valued Lipschitz functions with non-zero pointwise Lipschitz constant m-almost everywhere is residual, and hence dense, in the Banach space of Lipschitz and bounded functions. The result is the metric analogous to a result proved for real-valued Lipschitz maps defined on ℝ2 by Alberti et al. © Edinburgh Mathematical Society 2015.

A note on a Residual Subset of Lipschitz Functions on Metric Spaces

Cavalletti, Fabio
2015-01-01

Abstract

Let (X, d) be a quasi-convex, complete and separable metric space with reference probability measure m. We prove that the set of real-valued Lipschitz functions with non-zero pointwise Lipschitz constant m-almost everywhere is residual, and hence dense, in the Banach space of Lipschitz and bounded functions. The result is the metric analogous to a result proved for real-valued Lipschitz maps defined on ℝ2 by Alberti et al. © Edinburgh Mathematical Society 2015.
2015
58
3
631
636
http://dx.medra.org/10.1017/S0013091514000261
https://arxiv.org/abs/1306.4819
Cavalletti, Fabio
File in questo prodotto:
File Dimensione Formato  
note_on_a_residual_subset_of_lipschitz_functions_on_metric_spaces.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 134.13 kB
Formato Adobe PDF
134.13 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/44695
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact