In this note we prove that in a metric measure space (X,d,m) verifying the measure contraction property with parameters K∈R and 1<N<∞, any optimal transference plan between two marginal measures is induced by an optimal map, provided the first marginal is absolutely continuous with respect to m and the space itself is essentially non-branching. In particular this shows that there exists a unique transport plan and it is induced by a map.
Optimal maps in essentially non-branching spaces / Cavalletti, Fabio; Mondino, A.. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - 19:6(2017), pp. 1-27. [10.1142/S0219199717500079]
Optimal maps in essentially non-branching spaces
Cavalletti, Fabio;
2017-01-01
Abstract
In this note we prove that in a metric measure space (X,d,m) verifying the measure contraction property with parameters K∈R and 1File | Dimensione | Formato | |
---|---|---|---|
Cavalletti 2017.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
341.71 kB
Formato
Adobe PDF
|
341.71 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.