We study quantum mechanical systems with a discrete spectrum. We show that the asymptotic series associated to certain paths of steepest-descent (Lefschetz thimbles) are Borel resummable to the full result. Using a geometrical approach based on the PicardLefschetz theory we characterize the conditions under which perturbative expansions lead to exact results. Even when such conditions are not met, we explain how to define a different perturbative expansion that reproduces the full answer without the need of transseries, i.e. non-perturbative effects, such as real (or complex) instantons. Applications to several quantum mechanical systems are presented.
Titolo: | The power of perturbation theory |
Autori: | Serone, Marco; Spada, Gabriele; Villadoro, Giovanni |
Rivista: | |
Data di pubblicazione: | 2017 |
Volume: | 2017 |
Fascicolo: | 5 |
Pagina iniziale: | 1 |
Pagina finale: | 41 |
Numero di Articolo: | 056 |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/JHEP05(2017)056 |
Fulltext via DOI: | http://dx.doi.org/10.1007/JHEP05(2017)056 |
URL: | http://link.springer.com/article/10.1007%2FJHEP05%282017%29056 https://arxiv.org/abs/1702.04148 |
Appare nelle tipologie: | 1.1 Journal article |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
art%3A10.1007%2FJHEP05%282017%29056.pdf | Versione Editoriale (PDF) | ![]() | Open Access Visualizza/Apri |