We enumerate the cases in 2d conformal field theory where the logarithm of the reduced density matrix (the entanglement or modular hamiltonian) may be written as an integral over the energy-momentum tensor times a local weight. These include known examples and new ones corresponding to the time-dependent scenarios of a global and local quench. In these latter cases the entanglement hamiltonian depends on the momentum density as well as the energy density. In all cases the entanglement spectrum is that of the appropriate boundary CFT. We emphasize the role of boundary conditions at the entangling surface and the appearance of boundary entropies as universal O(1) terms in the entanglement entropy. ArXIV

Entanglement Hamiltonians in two-dimensional conformal field theory / Cardy, J.; Tonni, Erik. - In: JOURNAL OF STATISTICAL MECHANICS: THEORY AND EXPERIMENT. - ISSN 1742-5468. - 2016:12(2016), pp. 1-29. [10.1088/1742-5468/2016/12/123103]

Entanglement Hamiltonians in two-dimensional conformal field theory

Tonni, Erik
2016

Abstract

We enumerate the cases in 2d conformal field theory where the logarithm of the reduced density matrix (the entanglement or modular hamiltonian) may be written as an integral over the energy-momentum tensor times a local weight. These include known examples and new ones corresponding to the time-dependent scenarios of a global and local quench. In these latter cases the entanglement hamiltonian depends on the momentum density as well as the energy density. In all cases the entanglement spectrum is that of the appropriate boundary CFT. We emphasize the role of boundary conditions at the entangling surface and the appearance of boundary entropies as universal O(1) terms in the entanglement entropy. ArXIV
2016
12
1
29
123103
https://arxiv.org/abs/1608.01283
http://cdsads.u-strasbg.fr/abs/2016JSMTE..12.3103C
Cardy, J.; Tonni, Erik
File in questo prodotto:
File Dimensione Formato  
CT-16.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 9.37 MB
Formato Adobe PDF
9.37 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1608.01283v1.pdf

accesso aperto

Descrizione: Preprint does not differ much from the accepted version
Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 2.17 MB
Formato Adobe PDF
2.17 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/48120
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 143
  • ???jsp.display-item.citation.isi??? 135
social impact