Multisensory interactions have been documented within low-level, even primary, cortices and at early post-stimulus latencies. These effects are in turn linked to behavioral and perceptual modulations. In humans, visual cortex excitability, as measured by transcranial magnetic stimulation (TMS) induced phosphenes, can be reliably enhanced by the co-presentation of sounds. This enhancement occurs at pre-perceptual stages and is selective for different types of complex sounds. However, the source(s) of auditory inputs effectuating these excitability changes in primary visual cortex remain disputed. The present study sought to determine if direct connections between low-level auditory cortices and primary visual cortex are mediating these kinds of effects by varying the pitch and bandwidth of the sounds co-presented with single-pulse TMS over the occipital pole. Our results from 10 healthy young adults indicate that both the central frequency and bandwidth of a sound independently affect the excitability of visual cortex during processing stages as early as 30 msec post-sound onset. Such findings are consistent with direct connections mediating early-latency, low-level multisensory interactions within visual cortices.

Contributions of pitch and bandwidth to sound-induced enhancement of visual cortex excitability in humans

Bueti, Domenica;
2013-01-01

Abstract

Multisensory interactions have been documented within low-level, even primary, cortices and at early post-stimulus latencies. These effects are in turn linked to behavioral and perceptual modulations. In humans, visual cortex excitability, as measured by transcranial magnetic stimulation (TMS) induced phosphenes, can be reliably enhanced by the co-presentation of sounds. This enhancement occurs at pre-perceptual stages and is selective for different types of complex sounds. However, the source(s) of auditory inputs effectuating these excitability changes in primary visual cortex remain disputed. The present study sought to determine if direct connections between low-level auditory cortices and primary visual cortex are mediating these kinds of effects by varying the pitch and bandwidth of the sounds co-presented with single-pulse TMS over the occipital pole. Our results from 10 healthy young adults indicate that both the central frequency and bandwidth of a sound independently affect the excitability of visual cortex during processing stages as early as 30 msec post-sound onset. Such findings are consistent with direct connections mediating early-latency, low-level multisensory interactions within visual cortices.
2013
49
10
2728
2734
Spierer, Lucas; Manuel, Aurelie L; Bueti, Domenica; Murray, Micah M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/49226
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 20
social impact