Generalized Vorob’ev–Yablonski polynomials have been introduced by Clarkson and Mansfield in their study of rational solutions of the second Painlevé hierarchy. We present new Hankel determinant identities for the squares of these spe- cial polynomials in terms of Schur polynomials. As an application of the identities, we analyze the roots of generalized Vorob’ev–Yablonski polynomials and provide a partial characterization for the boundary curves of the highly regular patterns observed numerically in Clarkson and Mansfield (Nonlinearity 16(3):R1–R26, 2003).
Titolo: | Hankel Determinant Approach to Generalized Vorob’ev–Yablonski Polynomials and Their Roots |
Autori: | Balogh, Ferenc; Bertola, Marco; Bothner, Thomas |
Rivista: | |
Data di pubblicazione: | 2016 |
Volume: | 44 |
Fascicolo: | 3 |
Pagina iniziale: | 417 |
Pagina finale: | 453 |
Digital Object Identifier (DOI): | 10.1007/s00365-016-9328-4 |
URL: | https://arxiv.org/abs/1504.00440 |
Appare nelle tipologie: | 1.1 Journal article |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Balogh-Bertola-Bothner-Hankel-Vorobev-Yablonski.pdf | Articolo principale | Pdf-editoriale | Non specificato | Administrator Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.