We study the Dirichlet problem for stationary Hamilton-Jacobi equations {H(x,u(x),∇u(x))=0u(x)=φ(x) in Ω on ∂Ω. We consider a Caratheodory hamiltonian H=H(x,u,p), with a Sobolev-type (but not continuous) regularity with respect to the space variable x, and prove existence and uniqueness of a Lipschitz continuous maximal generalized solution which, in the continuous case, turns out to be the classical viscosity solution. In addition, we prove a continuous dependence property of the solution with respect to the boundary datum φ, completing in such a way a well posedness theory.

A well posedness result for generalized solutions of Hamilton-Jacobi equations / Zagatti, Sandro. - In: ADVANCES IN DIFFERENTIAL EQUATIONS. - ISSN 1079-9389. - 22:3-4(2017), pp. 259-304.

A well posedness result for generalized solutions of Hamilton-Jacobi equations

Zagatti, Sandro
2017-01-01

Abstract

We study the Dirichlet problem for stationary Hamilton-Jacobi equations {H(x,u(x),∇u(x))=0u(x)=φ(x) in Ω on ∂Ω. We consider a Caratheodory hamiltonian H=H(x,u,p), with a Sobolev-type (but not continuous) regularity with respect to the space variable x, and prove existence and uniqueness of a Lipschitz continuous maximal generalized solution which, in the continuous case, turns out to be the classical viscosity solution. In addition, we prove a continuous dependence property of the solution with respect to the boundary datum φ, completing in such a way a well posedness theory.
2017
22
3-4
259
304
http://projecteuclid.org/euclid.ade/1487386869
Zagatti, Sandro
File in questo prodotto:
File Dimensione Formato  
F-A-Zagatti-ADE-46.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 479.12 kB
Formato Adobe PDF
479.12 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/50428
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact