We focus on reducing the computational costs associated with the hydrodynamic stability of solutions of the incompressible Navier-Stokes equations for a Newtonian and viscous fluid in contraction-expansion channels. In particular, we are interested in studying steady bifurcations, occurring when non-unique stable solutions appear as physical and/or geometric control parameters are varied. The formulation of the stability problem requires solving an eigenvalue problem for a partial differential operator. An alternative to this approach is the direct simulation of the ow to characterize the asymptotic behavior of the solution. Both approaches can be extremely expensive in terms of computational time. We propose to apply Reduced Order Modeling (ROM) techniques to reduce the demanding computational costs associated with the detection of a type of steady bifurcations in fluid dynamics. The application that motivated the present study is the onset of asymmetries (i.e., symmetry breaking bifurcation) in blood flow through a regurgitant mitral valve, depending on the Reynolds number and the regurgitant mitral valve orifice shape.
Computational reduction strategies for the detection of steady bifurcations in incompressible fluid-dynamics: Applications to Coanda effect in cardiology / Pitton, Giuseppe; Quaini, Annalisa; Rozza, Gianluigi. - In: JOURNAL OF COMPUTATIONAL PHYSICS. - ISSN 0021-9991. - 344:September(2017), pp. 534-557. [10.1016/j.jcp.2017.05.010]
Computational reduction strategies for the detection of steady bifurcations in incompressible fluid-dynamics: Applications to Coanda effect in cardiology
Pitton, Giuseppe;Quaini, Annalisa;Rozza, Gianluigi
2017-01-01
Abstract
We focus on reducing the computational costs associated with the hydrodynamic stability of solutions of the incompressible Navier-Stokes equations for a Newtonian and viscous fluid in contraction-expansion channels. In particular, we are interested in studying steady bifurcations, occurring when non-unique stable solutions appear as physical and/or geometric control parameters are varied. The formulation of the stability problem requires solving an eigenvalue problem for a partial differential operator. An alternative to this approach is the direct simulation of the ow to characterize the asymptotic behavior of the solution. Both approaches can be extremely expensive in terms of computational time. We propose to apply Reduced Order Modeling (ROM) techniques to reduce the demanding computational costs associated with the detection of a type of steady bifurcations in fluid dynamics. The application that motivated the present study is the onset of asymmetries (i.e., symmetry breaking bifurcation) in blood flow through a regurgitant mitral valve, depending on the Reynolds number and the regurgitant mitral valve orifice shape.File | Dimensione | Formato | |
---|---|---|---|
main.pdf
non disponibili
Descrizione: pdf editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
3.16 MB
Formato
Adobe PDF
|
3.16 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
PQR_baseclass.pdf
Open Access dal 14/05/2019
Tipologia:
Documento in Post-print
Licenza:
Non specificato
Dimensione
7.26 MB
Formato
Adobe PDF
|
7.26 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.