The theory of representations of loop groups provides a framework where one can consider Riemann surfaces with arbitrary numbers of handles and nodes on the same footing. Using infinite grassmanians we present a general formulation of some conformal field theories on arbitrary surfaces in terms of an operator formalism. As a by-product, one can obtain some general results for the chiral bosonization of fermions using the vertex operator representation of finite dimensional groups. We believe that this set-up provides the natural arena where the recent proposal of Friedan and Shenker of formulating string theory in the universal moduli space can be discussed.

Loop groups, grassmanians and string theory / Alvarez gaumé, L.; Gomez, C.; Reina, Cesare. - In: PHYSICS LETTERS. SECTION B. - ISSN 0370-2693. - 190:1-2(1987), pp. 55-62. [10.1016/0370-2693(87)90839-2]

Loop groups, grassmanians and string theory

Reina, Cesare
1987-01-01

Abstract

The theory of representations of loop groups provides a framework where one can consider Riemann surfaces with arbitrary numbers of handles and nodes on the same footing. Using infinite grassmanians we present a general formulation of some conformal field theories on arbitrary surfaces in terms of an operator formalism. As a by-product, one can obtain some general results for the chiral bosonization of fermions using the vertex operator representation of finite dimensional groups. We believe that this set-up provides the natural arena where the recent proposal of Friedan and Shenker of formulating string theory in the universal moduli space can be discussed.
1987
190
1-2
55
62
https://inspirehep.net/record/245254?ln=en
Alvarez gaumé, L.; Gomez, C.; Reina, Cesare
File in questo prodotto:
File Dimensione Formato  
main.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 634.78 kB
Formato Adobe PDF
634.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/59293
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 116
  • ???jsp.display-item.citation.isi??? 129
social impact