We present the recent result in [3] concerning the existence of Cantor families of small amplitude, linearly stable, time quasi-periodic standing water wave solutions { i.e. periodic and even in the space variable x { of a bi-dimensional ocean with nite depth under the action of pure gravity. Such a result holds for all the values of the depth parameter in a Borel set of asymptotically full measure.

KAM for gravity water waves in finite depth / Baldi, P.; Berti, M.; Haus, E.; Montalto, R.. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1120-6330. - 29:2(2018), pp. 215-236. [10.4171/RLM/802]

KAM for gravity water waves in finite depth

Berti, M.;Montalto, R.
2018-01-01

Abstract

We present the recent result in [3] concerning the existence of Cantor families of small amplitude, linearly stable, time quasi-periodic standing water wave solutions { i.e. periodic and even in the space variable x { of a bi-dimensional ocean with nite depth under the action of pure gravity. Such a result holds for all the values of the depth parameter in a Borel set of asymptotically full measure.
2018
29
2
215
236
http://wpage.unina.it/emanuele.haus/Nota-WW.pdf
Baldi, P.; Berti, M.; Haus, E.; Montalto, R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/60273
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact