This is an introductory review to localization techniques in supersymmetric two-dimensional gauge theories. In particular, we describe how to construct Lagrangians of $ \newcommand{\re}{{\rm Re}~} \newcommand{\mat}[1]{\left(\begin{array}{cc}#1\end{array}\right)} \newcommand{\cN}{\mathcal{N}} \cN = (2, 2)$ theories on curved spaces, and how to compute their partition functions and certain correlators on the sphere, the hemisphere and other curved backgrounds. We also describe how to evaluate the partition function of $ \newcommand{\re}{{\rm Re}~} \newcommand{\mat}[1]{\left(\begin{array}{cc}#1\end{array}\right)} \newcommand{\cN}{\mathcal{N}} \cN = (0, 2)$ theories on the torus, known as the elliptic genus. Finally we summarize some of the applications, in particular to probe mirror symmetry and other non-perturbative dualities.

Supersymmetric localization in two dimensions / Benini, Francesco; Le Floch, Bruno. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - 50:44(2017), pp. 1-58. [10.1088/1751-8121/aa77bb]

Supersymmetric localization in two dimensions

Benini, Francesco;
2017-01-01

Abstract

This is an introductory review to localization techniques in supersymmetric two-dimensional gauge theories. In particular, we describe how to construct Lagrangians of $ \newcommand{\re}{{\rm Re}~} \newcommand{\mat}[1]{\left(\begin{array}{cc}#1\end{array}\right)} \newcommand{\cN}{\mathcal{N}} \cN = (2, 2)$ theories on curved spaces, and how to compute their partition functions and certain correlators on the sphere, the hemisphere and other curved backgrounds. We also describe how to evaluate the partition function of $ \newcommand{\re}{{\rm Re}~} \newcommand{\mat}[1]{\left(\begin{array}{cc}#1\end{array}\right)} \newcommand{\cN}{\mathcal{N}} \cN = (0, 2)$ theories on the torus, known as the elliptic genus. Finally we summarize some of the applications, in particular to probe mirror symmetry and other non-perturbative dualities.
2017
50
44
1
58
443003
https://arxiv.org/abs/1608.02955
https://iopscience.iop.org/article/10.1088/1751-8121/aa77bb/meta
Benini, Francesco; Le Floch, Bruno
File in questo prodotto:
File Dimensione Formato  
Benini_2017_J._Phys._A__Math._Theor._50_443003.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 4.1 MB
Formato Adobe PDF
4.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/60648
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 32
social impact