We prove existence and regularity of optimal shapes for the problem min{P(Ω)+G(Ω): Ω⊂D, |Ω|=m}, where P denotes the perimeter, |⋅| is the volume, and the functional G is either one of the following: extless{}ul extgreater{} extless{}li extgreater{} the Dirichlet energy E_f, with respect to a (possibly sign-changing) function f∈Lp; extless{}/li extgreater{} extless{}li extgreater{}a spectral functional of the form F(λ_1,…,λ_k), where λ_k is the kth eigenvalue of the Dirichlet Laplacian and F:Rk→R is Lipschitz continuous and increasing in each variable. extless{}/li extgreater{} extless{}/ul extgreater{}The domain D is the whole space Rd or a bounded domain. We also give general assumptions on the functional G so that the result remains valid.

Regularity of minimizers of shape optimization problems involving perimeter / De Philippis, Guido; Lamboley, Jimmy; Pierre, Michel; Velichkov, Bozhidar. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 109:January 2018(2018), pp. 147-181. [10.1016/j.matpur.2017.05.021]

Regularity of minimizers of shape optimization problems involving perimeter

De Philippis, Guido;
2018-01-01

Abstract

We prove existence and regularity of optimal shapes for the problem min{P(Ω)+G(Ω): Ω⊂D, |Ω|=m}, where P denotes the perimeter, |⋅| is the volume, and the functional G is either one of the following: extless{}ul extgreater{} extless{}li extgreater{} the Dirichlet energy E_f, with respect to a (possibly sign-changing) function f∈Lp; extless{}/li extgreater{} extless{}li extgreater{}a spectral functional of the form F(λ_1,…,λ_k), where λ_k is the kth eigenvalue of the Dirichlet Laplacian and F:Rk→R is Lipschitz continuous and increasing in each variable. extless{}/li extgreater{} extless{}/ul extgreater{}The domain D is the whole space Rd or a bounded domain. We also give general assumptions on the functional G so that the result remains valid.
2018
109
January 2018
147
181
https://arxiv.org/abs/1605.06294
De Philippis, Guido; Lamboley, Jimmy; Pierre, Michel; Velichkov, Bozhidar
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/60736
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact