We provide a geometric characterization of rigidity of equality cases in Ehrhard's symmetrization inequality for Gaussian perimeter. This condition is formulated in terms of a new measure-theoretic notion of connectedness for Borel sets, inspired by Federer's definition of indecomposable current.
Essential connectedness and the rigidity problem for Gaussian symmetrization / Cagnetti, F.; Colombo, M.; De Philippis, Guido; Maggi, F.. - In: JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY. - ISSN 1435-9855. - 19:2(2017), pp. 395-439. [10.4171/JEMS/669]
Essential connectedness and the rigidity problem for Gaussian symmetrization
De Philippis, Guido;
2017-01-01
Abstract
We provide a geometric characterization of rigidity of equality cases in Ehrhard's symmetrization inequality for Gaussian perimeter. This condition is formulated in terms of a new measure-theoretic notion of connectedness for Borel sets, inspired by Federer's definition of indecomposable current.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2017_Essential connectedness and the rigidity problem for Gaussian symmetrization.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
638.82 kB
Formato
Adobe PDF
|
638.82 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.