In this paper we prove that in appropriate weighted Sobolev spaces, in the case of no bound states, the scattering map of the Korteweg-de Vries (KdV) on R is a perturbation of the Fourier transform by a regularizing operator. As an application of this result, we show that the difference of the KdV ow and the corresponding Airy ow is 1-smoothing.

One smoothing property of the scattering map of the KDV on R / Maspero, Alberto; Schaad, Beat. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - 36:3(2016), pp. 1493-1537. [10.3934/dcds.2016.36.1493]

One smoothing property of the scattering map of the KDV on R

Maspero, Alberto
;
2016-01-01

Abstract

In this paper we prove that in appropriate weighted Sobolev spaces, in the case of no bound states, the scattering map of the Korteweg-de Vries (KdV) on R is a perturbation of the Fourier transform by a regularizing operator. As an application of this result, we show that the difference of the KdV ow and the corresponding Airy ow is 1-smoothing.
2016
36
3
1493
1537
http://aimsciences.org/journals/pdfs.jsp?paperID=11588&mode=full
https://arxiv.org/abs/1412.3268
Maspero, Alberto; Schaad, Beat
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/63199
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact