We prove that the nonlinear part H∗ of the KdV Hamiltonian Hkdv, when expressed in action variables I=(In)n≥1, extends to a real analytic function on the positive quadrant ℓ2+(N) of ℓ2(N) and is strictly concave near 0. As a consequence, the differential of H∗ defines a local diffeomorphism near 0 of ℓ2C(N).

On the Convexity of the KdV Hamiltonian / Kappeler, T.; Maspero, A.; Molnar, J.; Topalov, P.. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 346:1(2016), pp. 191-236. [10.1007/s00220-015-2563-x]

On the Convexity of the KdV Hamiltonian

Maspero, A.;
2016-01-01

Abstract

We prove that the nonlinear part H∗ of the KdV Hamiltonian Hkdv, when expressed in action variables I=(In)n≥1, extends to a real analytic function on the positive quadrant ℓ2+(N) of ℓ2(N) and is strictly concave near 0. As a consequence, the differential of H∗ defines a local diffeomorphism near 0 of ℓ2C(N).
2016
346
1
191
236
http://link.springer-ny.com/link/service/journals/00220/index.htm
https://arxiv.org/abs/1502.05857
Kappeler, T.; Maspero, A.; Molnar, J.; Topalov, P.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/63201
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact