The aim of this paper is to investigate the non-relativistic limit of integrable quantum field theories with fermionic fields, such as the O(N) Gross-Neveu model, the supersymmetric Sinh-Gordon and non-linear sigma models. The non-relativistic limit of these theories is implemented by a double scaling limit which consists of sending the speed of light c to infinity and rescaling at the same time the relevant coupling constant of the model in such a way to have finite energy excitations. For the general purpose of mapping the space of continuous non-relativistic integrable models, this paper completes and integrates the analysis done in Bastianello A et al (2016 J. Stat. Mech. 123104) on the non-relativistic limit of purely bosonic theories.

Non relativistic limit of integrable QFT with fermionic excitations / Bastianello, Alvise; De Luca, Andrea; Mussardo, Giuseppe. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - 50:23(2017), pp. 1-28. [10.1088/1751-8121/aa6f69]

Non relativistic limit of integrable QFT with fermionic excitations

Bastianello, Alvise;De Luca, Andrea;Mussardo, Giuseppe
2017

Abstract

The aim of this paper is to investigate the non-relativistic limit of integrable quantum field theories with fermionic fields, such as the O(N) Gross-Neveu model, the supersymmetric Sinh-Gordon and non-linear sigma models. The non-relativistic limit of these theories is implemented by a double scaling limit which consists of sending the speed of light c to infinity and rescaling at the same time the relevant coupling constant of the model in such a way to have finite energy excitations. For the general purpose of mapping the space of continuous non-relativistic integrable models, this paper completes and integrates the analysis done in Bastianello A et al (2016 J. Stat. Mech. 123104) on the non-relativistic limit of purely bosonic theories.
50
23
1
28
234002
http://iopscience.iop.org/article/10.1088/1751-8121/aa6f69/pdf
https://arxiv.org/abs/1701.06542
Bastianello, Alvise; De Luca, Andrea; Mussardo, Giuseppe
File in questo prodotto:
File Dimensione Formato  
Bastianello_2017_J._Phys._A%3A_Math._Theor._50_234002.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/67626
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact