A detailed numerical study of the long time behaviour of dispersive shock waves in solutions to the Kadomtsev–Petviashvili (KP) I equation is presented. It is shown that modulated lump solutions emerge from the dispersive shock waves. For the description of dispersive shock waves, Whitham modulation equations for KP are obtained. It is shown that the modulation equations near the soliton line are hyperbolic for the KPII equation while they are elliptic for the KPI equation leading to a focusing effect and the formation of lumps. Such a behaviour is similar to the appearance of breathers for the focusing nonlinear Schrödinger equation in the semiclassical limit.

Numerical study of the Kadomtsev–Petviashvili equation and dispersive shock waves / Grava, T.; Klein, C.; Pitton, G.. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON. SERIES A. - ISSN 1364-5021. - 474:2210(2018), pp. 1-20. [10.1098/rspa.2017.0458]

Numerical study of the Kadomtsev–Petviashvili equation and dispersive shock waves

Grava, T.;Pitton, G.
2018-01-01

Abstract

A detailed numerical study of the long time behaviour of dispersive shock waves in solutions to the Kadomtsev–Petviashvili (KP) I equation is presented. It is shown that modulated lump solutions emerge from the dispersive shock waves. For the description of dispersive shock waves, Whitham modulation equations for KP are obtained. It is shown that the modulation equations near the soliton line are hyperbolic for the KPII equation while they are elliptic for the KPI equation leading to a focusing effect and the formation of lumps. Such a behaviour is similar to the appearance of breathers for the focusing nonlinear Schrödinger equation in the semiclassical limit.
2018
474
2210
1
20
20170458
https://arxiv.org/pdf/1706.04104.pdf
Grava, T.; Klein, C.; Pitton, G.
File in questo prodotto:
File Dimensione Formato  
20170458.full.pdf

non disponibili

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 626.69 kB
Formato Adobe PDF
626.69 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1706.04104.pdf

Open Access dal 15/03/2019

Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/67822
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 13
social impact