Background: The transcription factor Nkx2-1 (also known as TTF-1, Titf1 or T/EBP) contains two apparently redundant activation domains and is post-translationally modified by phosphorylation. We have generated mouse mutant strains to assess the roles of the two activation domains and of phosphorylation in mouse development and differentiation. Results: Mouse strains expressing variants of the transcription factor Nkx2-1 deleted of either activation domain have been constructed. Phenotypic analysis shows for each mutant a distinct set of defects demonstrating that distinct portions of the protein endow diverse developmental functions of Nkx2-1. Furthermore, a mouse strain expressing a Nkx2-1 protein mutated in the phosphorylation sites shows a thyroid gland with deranged follicular organization and gene expression profile demonstrating the functional role of phosphorylation in Nkx2-1. Conclusions: The pleiotropic functions of Nkx2-1 are not all due to the protein as a whole since some of them can be assigned to separate domains of the protein or to specific post-translational modifications. These results have implication for the evolutionary role of mutations in transcription factors. © 2011 Silberschmidt et al; licensee BioMed Central Ltd.
In vivo role of different domains and of phosphorylation in the transcription factor Nkx2-1 / Silberschmidt, Daniel; Rodriguez-Mallon, Alina; Mithboakar, Prathiba; Cal, Gaetano; Amendola, Elena; Sanges, Remo; Zannini, Mariastella; Scarf, Marzia; De Luca, Pasquale; Nitsch, Lucio; Di Lauro, Roberto; De Felice, Mario. - In: BMC DEVELOPMENTAL BIOLOGY. - ISSN 1471-213X. - 11:1(2011), pp. 1-16. [10.1186/1471-213X-11-9]
In vivo role of different domains and of phosphorylation in the transcription factor Nkx2-1
Sanges, RemoMembro del Collaboration group
;
2011-01-01
Abstract
Background: The transcription factor Nkx2-1 (also known as TTF-1, Titf1 or T/EBP) contains two apparently redundant activation domains and is post-translationally modified by phosphorylation. We have generated mouse mutant strains to assess the roles of the two activation domains and of phosphorylation in mouse development and differentiation. Results: Mouse strains expressing variants of the transcription factor Nkx2-1 deleted of either activation domain have been constructed. Phenotypic analysis shows for each mutant a distinct set of defects demonstrating that distinct portions of the protein endow diverse developmental functions of Nkx2-1. Furthermore, a mouse strain expressing a Nkx2-1 protein mutated in the phosphorylation sites shows a thyroid gland with deranged follicular organization and gene expression profile demonstrating the functional role of phosphorylation in Nkx2-1. Conclusions: The pleiotropic functions of Nkx2-1 are not all due to the protein as a whole since some of them can be assigned to separate domains of the protein or to specific post-translational modifications. These results have implication for the evolutionary role of mutations in transcription factors. © 2011 Silberschmidt et al; licensee BioMed Central Ltd.File | Dimensione | Formato | |
---|---|---|---|
1471-213X-11-9-1 (2).pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.1 MB
Formato
Adobe PDF
|
1.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.