We consider the problem of separation of variables for the algebraically integrable Hamiltonian systems possessing gl(n)-valued Lax matrices depending on a spectral parameter that satisfy linear Poisson brackets with some gl(n)⊗gl(n)-valued classical r-matrices. We formulate, in terms of the corresponding r-matrices, a sufficient condition that guarantees that the “separating polynomials” of E.Sklyanin, Comm. Math. Phys. 150, 181 (1992), D.Scott, J. Math. Phys. 35, 5831 (1994), M.Gekhtman, Comm. Math. Phys. 167, 593 (1995), P.Diener, B.Dubrovin, Algebraic-geometrical Darboux coordinates in R-matrix formalism, SISSA preprint 88-94-FM (1994), produce a system of canonical variables. We consider two examples of classical r-matrices and separating polynomials. One of these examples, namely, the n-parametric family of non-skew-symmetric non-dynamical classical r-matrices of T.Skrypnyk, Phys. Lett. A 334, 390, and 347, 266 (2005) and the corre- sponding separating polynomials is new. We show that the separating polynomials of P.Diener, B.Dubrovin, ibid., produce in this case a complete set of separated variables for the corresponding generalized Gaudin models with or without external magnetic field
Separation of variables for linear Lax algebras and classical r-matrices / Dubrovin, Boris; Skrypnyk, Taras. - In: JOURNAL OF MATHEMATICAL PHYSICS. - ISSN 0022-2488. - 59:9(2018), pp. 1-39. [10.1063/1.5031769]
Separation of variables for linear Lax algebras and classical r-matrices
Dubrovin Boris
;Skrypnyk, Taras
2018-01-01
Abstract
We consider the problem of separation of variables for the algebraically integrable Hamiltonian systems possessing gl(n)-valued Lax matrices depending on a spectral parameter that satisfy linear Poisson brackets with some gl(n)⊗gl(n)-valued classical r-matrices. We formulate, in terms of the corresponding r-matrices, a sufficient condition that guarantees that the “separating polynomials” of E.Sklyanin, Comm. Math. Phys. 150, 181 (1992), D.Scott, J. Math. Phys. 35, 5831 (1994), M.Gekhtman, Comm. Math. Phys. 167, 593 (1995), P.Diener, B.Dubrovin, Algebraic-geometrical Darboux coordinates in R-matrix formalism, SISSA preprint 88-94-FM (1994), produce a system of canonical variables. We consider two examples of classical r-matrices and separating polynomials. One of these examples, namely, the n-parametric family of non-skew-symmetric non-dynamical classical r-matrices of T.Skrypnyk, Phys. Lett. A 334, 390, and 347, 266 (2005) and the corre- sponding separating polynomials is new. We show that the separating polynomials of P.Diener, B.Dubrovin, ibid., produce in this case a complete set of separated variables for the corresponding generalized Gaudin models with or without external magnetic fieldFile | Dimensione | Formato | |
---|---|---|---|
Dubrovin-Skrypnyk published online.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
573.95 kB
Formato
Adobe PDF
|
573.95 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
_pdf_archive_JMAPAQ_vol_59_iss_9_091405_1_am.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Non specificato
Dimensione
841.38 kB
Formato
Adobe PDF
|
841.38 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.