We describe the close connection between the linear system for the sixth Painlevé equation and the general Heun equation, formulate the Riemann–Hilbert problem for the Heun functions and show how, in the case of reducible monodromy, the Riemann–Hilbert formalism can be used to construct explicit polynomial solutions of the Heun equation.
A Riemann–Hilbert approach to the Heun equation / Dubrovin, Boris; Kapaev, Andrei. - In: SYMMETRY, INTEGRABILITY AND GEOMETRY: METHODS AND APPLICATIONS. - ISSN 1815-0659. - 14:(2018), pp. 1-24. [10.3842/SIGMA.2018.093]
A Riemann–Hilbert approach to the Heun equation
Dubrovin, Boris
;Kapaev, Andrei
2018-01-01
Abstract
We describe the close connection between the linear system for the sixth Painlevé equation and the general Heun equation, formulate the Riemann–Hilbert problem for the Heun functions and show how, in the case of reducible monodromy, the Riemann–Hilbert formalism can be used to construct explicit polynomial solutions of the Heun equation.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Dubrovin-Kapaev.pdf
accesso aperto
Descrizione: DOAJ Open Access
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
570.4 kB
Formato
Adobe PDF
|
570.4 kB | Adobe PDF | Visualizza/Apri |
Dubrovin_Kapaev.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Non specificato
Dimensione
389 kB
Formato
Adobe PDF
|
389 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.