We consider the full probability distribution for the transverse magnetization of a finite subsystem in the transverse field Ising chain. We derive a determinant representation of the corresponding characteristic function for general Gaussian states. We consider applications to the full counting statistics in the ground state, finite temperature equilibrium states, non-equilibrium steady states and time evolution after global quantum quenches. We derive an analytical expression for the time and subsystem size dependence of the characteristic function at sufficiently late times after a quantum quench. This expression features an interesting multiple light-cone structure.

Full counting statistics in the transverse field Ising chain / Groha, Stefan; Essler, Fabian; Calabrese, Pasquale. - In: SCIPOST PHYSICS. - ISSN 2542-4653. - 4:6(2018), pp. 1-37. [10.21468/SciPostPhys.4.6.043]

Full counting statistics in the transverse field Ising chain

Calabrese, Pasquale
2018-01-01

Abstract

We consider the full probability distribution for the transverse magnetization of a finite subsystem in the transverse field Ising chain. We derive a determinant representation of the corresponding characteristic function for general Gaussian states. We consider applications to the full counting statistics in the ground state, finite temperature equilibrium states, non-equilibrium steady states and time evolution after global quantum quenches. We derive an analytical expression for the time and subsystem size dependence of the characteristic function at sufficiently late times after a quantum quench. This expression features an interesting multiple light-cone structure.
2018
4
6
1
37
043
10.21468/SciPostPhys.4.6.043
https://arxiv.org/abs/1803.09755
Groha, Stefan; Essler, Fabian; Calabrese, Pasquale
File in questo prodotto:
File Dimensione Formato  
SciPostPhys_4_6_043.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.46 MB
Formato Adobe PDF
2.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/85584
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 52
social impact