We extend Allard's celebrated rectifiability theorem to the setting of varifolds with locally bounded first variation with respect to an anisotropic integrand. In particular, we identify a sufficient and necessary condition on the integrand to obtain the rectifiability of every \(d\)-dimensional varifold with locally bounded first variation and positive \(d\)-dimensional density. In codimension one, this condition is shown to be equivalent to the strict convexity of the integrand with respect to the tangent plane.

Rectifiability of Varifolds with Locally Bounded First Variation with Respect to Anisotropic Surface Energies / De Philippis, G.; De Rosa, A.; Ghiraldin, F.. - In: COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS. - ISSN 0010-3640. - 71:6(2018), pp. 1123-1148. [10.1002/cpa.21713]

Rectifiability of Varifolds with Locally Bounded First Variation with Respect to Anisotropic Surface Energies

De Philippis, G.;
2018-01-01

Abstract

We extend Allard's celebrated rectifiability theorem to the setting of varifolds with locally bounded first variation with respect to an anisotropic integrand. In particular, we identify a sufficient and necessary condition on the integrand to obtain the rectifiability of every \(d\)-dimensional varifold with locally bounded first variation and positive \(d\)-dimensional density. In codimension one, this condition is shown to be equivalent to the strict convexity of the integrand with respect to the tangent plane.
2018
71
6
1123
1148
https://doi.org/10.1002/cpa.21713
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.21713
https://arxiv.org/abs/1609.01908
De Philippis, G.; De Rosa, A.; Ghiraldin, F.
File in questo prodotto:
File Dimensione Formato  
2017_Rectifiability of varifolds with locally bounded first variation with respect to anisotropic surface energies.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 288.96 kB
Formato Adobe PDF
288.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
DePhilippis.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 271.77 kB
Formato Adobe PDF
271.77 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/85684
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact