In this note we generalize the Ball-James rigidity theorem for gradient differential inclusions to the setting of a general linear differential constraint. In particular, we prove the rigidity for approximate solutions to the two-state inclusion with incompatible states for merely L1-bounded sequences. In this way, our theorem can be seen as a result of compensated compactness in the linear-growth setting.
On the two-state problem for general differential operators / De Philippis, Guido; Palmieri, Luca; Rindler, Filip. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 177, Part B:(2018), pp. 387-396. [10.1016/j.na.2018.03.015]
On the two-state problem for general differential operators
De Philippis Guido;PALMIERI, LUCA;
2018-01-01
Abstract
In this note we generalize the Ball-James rigidity theorem for gradient differential inclusions to the setting of a general linear differential constraint. In particular, we prove the rigidity for approximate solutions to the two-state inclusion with incompatible states for merely L1-bounded sequences. In this way, our theorem can be seen as a result of compensated compactness in the linear-growth setting.File | Dimensione | Formato | |
---|---|---|---|
2018_On the two state problem for general differential operators.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
687.17 kB
Formato
Adobe PDF
|
687.17 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
deFilippis_Palmieri.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
145.58 kB
Formato
Adobe PDF
|
145.58 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.