Knots and supercoiling are both introduced in bacterial plasmids by catalytic processes involving DNA strand passages. While the effects on plasmid organization has been extensively studied for knotting and supercoiling taken separately, much less is known about their concurrent action. Here, we use molecular dynamics simulations and oxDNA, an accurate mesoscopic DNA model, to study the kinetic and metric changes introduced by complex (five-crossing) knots and supercoiling in 2 kbp-long DNA rings. We find several unexpected results. First, the conformational ensemble is dominated by two distinct states, differing in branchedness and knot size. Secondly, fluctuations between these states are as fast as the metric relaxation of unknotted rings. In spite of this, certain boundaries of knotted and plectonemically-wound regions can persist over much longer timescales. These pinned regions involve multiple strands that are interlocked by the cooperative action of topological and supercoiling constraints. Their long-lived character may be relevant for the simplifying action of topoisomerases.

Dynamics of supercoiled DNA with complex knots: large-scale rearrangements and persistent multi-strand interlocking / Coronel, Lucia; Suma, Antonio; Micheletti, Cristian. - In: NUCLEIC ACIDS RESEARCH. - ISSN 0305-1048. - 46:15(2018), pp. 7533-7541. [10.1093/nar/gky523]

Dynamics of supercoiled DNA with complex knots: large-scale rearrangements and persistent multi-strand interlocking

Coronel, Lucia;Micheletti, Cristian
2018-01-01

Abstract

Knots and supercoiling are both introduced in bacterial plasmids by catalytic processes involving DNA strand passages. While the effects on plasmid organization has been extensively studied for knotting and supercoiling taken separately, much less is known about their concurrent action. Here, we use molecular dynamics simulations and oxDNA, an accurate mesoscopic DNA model, to study the kinetic and metric changes introduced by complex (five-crossing) knots and supercoiling in 2 kbp-long DNA rings. We find several unexpected results. First, the conformational ensemble is dominated by two distinct states, differing in branchedness and knot size. Secondly, fluctuations between these states are as fast as the metric relaxation of unknotted rings. In spite of this, certain boundaries of knotted and plectonemically-wound regions can persist over much longer timescales. These pinned regions involve multiple strands that are interlocked by the cooperative action of topological and supercoiling constraints. Their long-lived character may be relevant for the simplifying action of topoisomerases.
2018
46
15
7533
7541
https://doi.org/10.1093/nar/gky523
Coronel, Lucia; Suma, Antonio; Micheletti, Cristian
File in questo prodotto:
File Dimensione Formato  
gky523.pdf

accesso aperto

Descrizione: Open Access article
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.12 MB
Formato Adobe PDF
3.12 MB Adobe PDF Visualizza/Apri
gky523_supplemental_figures.pdf

accesso aperto

Descrizione: Supplementary material
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 4.43 MB
Formato Adobe PDF
4.43 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/85898
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact