We continue the study of Lagrangian descriptions of $\mathcalN=2$ Argyres-Douglas theories. We use our recent interpretation in terms of sequential confinement to guess the Lagrangians of all the Argyres-Douglas models with Abelian three dimensional mirror. We find classes of four dimensional $\mathcalN=1$ quivers that flow in the infrared to generalized Argyres-Douglas theories, such as the $(A_k,A_kN+N-1)$ models. We study in detail how the $\mathcalN=1$ chiral rings map to the Coulomb and Higgs Branches of the $\mathcalN=2$ CFT's. The three dimensional mirror RG flows are shown to land on the $\mathcalN=4$ complete graph quivers. We also compactify to three dimensions the gauge theory dual to $(A_1,D_4)$, and find the expected Abelianization duality with $\mathcalN=4$ SQED with $3$ flavors.

Lagrangians for generalized Argyres-Douglas theories / Benvenuti, Sergio; Giacomelli, Simone. - In: JOURNAL OF HIGH ENERGY PHYSICS. - ISSN 1029-8479. - 2017:10(2017), pp. 1-40. [10.1007/JHEP10(2017)106]

Lagrangians for generalized Argyres-Douglas theories

Benvenuti, Sergio;
2017-01-01

Abstract

We continue the study of Lagrangian descriptions of $\mathcalN=2$ Argyres-Douglas theories. We use our recent interpretation in terms of sequential confinement to guess the Lagrangians of all the Argyres-Douglas models with Abelian three dimensional mirror. We find classes of four dimensional $\mathcalN=1$ quivers that flow in the infrared to generalized Argyres-Douglas theories, such as the $(A_k,A_kN+N-1)$ models. We study in detail how the $\mathcalN=1$ chiral rings map to the Coulomb and Higgs Branches of the $\mathcalN=2$ CFT's. The three dimensional mirror RG flows are shown to land on the $\mathcalN=4$ complete graph quivers. We also compactify to three dimensions the gauge theory dual to $(A_1,D_4)$, and find the expected Abelianization duality with $\mathcalN=4$ SQED with $3$ flavors.
2017
2017
10
1
40
106
https://link.springer.com/article/10.1007%2FJHEP10%282017%29106
http://arxiv.org/abs/1707.05113v2
Benvenuti, Sergio; Giacomelli, Simone
File in questo prodotto:
File Dimensione Formato  
JHEP201710106.pdf

accesso aperto

Descrizione: Article funded by SCOAP3
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 747.41 kB
Formato Adobe PDF
747.41 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/85994
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 74
  • ???jsp.display-item.citation.isi??? 72
social impact