A finite quiver Q without loops or 2-cycles defines a 3CY triangulated category D(Q) and a finite heart A(Q). We show that if Q satisfies some (strong) conditions then the space of stability conditions Stab(A(Q)) supported on this heart admits a natural family of semisimple Frobenius manifold structures, constructed using the invariants counting semistable objects in D(Q). In the case of An evaluating the family at a special point we recover a branch of the Saito Frobenius structure of the An singularity y2=xn+1. We give examples where applying the construction to each mutation of Q and evaluating the families at a special point yields a different branch of the maximal analytic continuation of the same semisimple Frobenius manifold. In particular we check that this holds in the case of An, n≤5

A construction of Frobenius manifolds from stability conditions / Barbieri, A.; Stoppa, J.; Sutherland, T.. - In: PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6115. - 118:6(2019), pp. 1328-1366. [10.1112/plms.12217]

A construction of Frobenius manifolds from stability conditions

Stoppa, J.
;
2019-01-01

Abstract

A finite quiver Q without loops or 2-cycles defines a 3CY triangulated category D(Q) and a finite heart A(Q). We show that if Q satisfies some (strong) conditions then the space of stability conditions Stab(A(Q)) supported on this heart admits a natural family of semisimple Frobenius manifold structures, constructed using the invariants counting semistable objects in D(Q). In the case of An evaluating the family at a special point we recover a branch of the Saito Frobenius structure of the An singularity y2=xn+1. We give examples where applying the construction to each mutation of Q and evaluating the families at a special point yields a different branch of the maximal analytic continuation of the same semisimple Frobenius manifold. In particular we check that this holds in the case of An, n≤5
2019
118
6
1328
1366
https://doi.org/10.1112/plms.12217
https://arxiv.org/abs/1612.06295
Barbieri, A.; Stoppa, J.; Sutherland, T.
File in questo prodotto:
File Dimensione Formato  
BarbieriStoppaSutherlandRev1.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 487.43 kB
Formato Adobe PDF
487.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/87436
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact