Small activating RNAs (saRNAs), targeting endogenous genes and stimulating their transcription, are a promising tool for implementing a variety of neurotherapeutic strategies. Among these there is the stimulation of select histogenetic subroutines for purposes of cell-based brain repair, as well as the therapeutic treatment of gene expression deficits underlying severe neurological disorders. We employed RNA activation (RNAa) to transactivate the Emx2 transcription factor gene in embryonic cortico-cerebral precursor cells. This led to enhanced self-renewal, delayed differentiation, and reduced death of neuronally committed precursors, resulting in a remarkable expansion of the neuronogenic precursors pool. These results are of paramount interest for purposes of gene-promoted brain repair. As such, RNAa makes therapeutic stimulation of neuronogenesis via Emx2 overexpression a feasible goal, preventing the drawbacks of exogenous gene copies introduction. Moreover, we employed RNAa to achieve a gentle transactivation of the Foxg1 transcription factor gene, specifically in cortico-cerebral cells. This manipulation led to an appreciable biological outcome, while complying with endogenous gene tuning linked to early central nervous system regionalization and late activity of neocortical projection neurons. Foxg1-activating miRNAs stimulated RNApolII recruitment, possibly via Ago1. One of them worked promisingly in vivo. As such, RNAa can be a valuable approach for therapeutic treatment of the FOXG1-haploinsufficiency-linked variant of the Rett syndrome. Remarkably, hemizygosity for specific genes and polygenic chromosomal segments underlies a huge number of neuropathological entities for which no cure is presently available. Based on the results reported above, RNAa might be a simple and scalable approach for fixing this class of problems.
Enhancing neuronogenesis and counteracting neuropathogenic gene haploinsufficiencies by RNA gene activation / Mallamaci, Antonio. - 983:(2017), pp. 23-39. [10.1007/978-981-10-4310-9_2]
Enhancing neuronogenesis and counteracting neuropathogenic gene haploinsufficiencies by RNA gene activation
Mallamaci, Antonio
2017-01-01
Abstract
Small activating RNAs (saRNAs), targeting endogenous genes and stimulating their transcription, are a promising tool for implementing a variety of neurotherapeutic strategies. Among these there is the stimulation of select histogenetic subroutines for purposes of cell-based brain repair, as well as the therapeutic treatment of gene expression deficits underlying severe neurological disorders. We employed RNA activation (RNAa) to transactivate the Emx2 transcription factor gene in embryonic cortico-cerebral precursor cells. This led to enhanced self-renewal, delayed differentiation, and reduced death of neuronally committed precursors, resulting in a remarkable expansion of the neuronogenic precursors pool. These results are of paramount interest for purposes of gene-promoted brain repair. As such, RNAa makes therapeutic stimulation of neuronogenesis via Emx2 overexpression a feasible goal, preventing the drawbacks of exogenous gene copies introduction. Moreover, we employed RNAa to achieve a gentle transactivation of the Foxg1 transcription factor gene, specifically in cortico-cerebral cells. This manipulation led to an appreciable biological outcome, while complying with endogenous gene tuning linked to early central nervous system regionalization and late activity of neocortical projection neurons. Foxg1-activating miRNAs stimulated RNApolII recruitment, possibly via Ago1. One of them worked promisingly in vivo. As such, RNAa can be a valuable approach for therapeutic treatment of the FOXG1-haploinsufficiency-linked variant of the Rett syndrome. Remarkably, hemizygosity for specific genes and polygenic chromosomal segments underlies a huge number of neuropathological entities for which no cure is presently available. Based on the results reported above, RNAa might be a simple and scalable approach for fixing this class of problems.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.