Revealing phase transitions of solids through mechanical anomalies in the friction of nanotips sliding on their surfaces, a successful approach for continuous transitions, is still an unexplored tool for first-order ones. Owing to slow nucleation, first-order structural transformations occur with hysteresis, comprised between two spinodal temperatures where, on both sides of the thermodynamic transition, one or the other metastable free energy branches terminates. The spinodal transformation, a collective one-shot event without heat capacity anomaly, is easy to trigger by a weak external perturbation. Here we show that even the gossamer mechanical action of an AFM-tip can locally act as a trigger, narrowly preempting the spontaneous spinodal transformation, and making it observable as a nanofrictional anomaly. Confirming this expectation, the CCDW-NCCDW first-order transition of the important layer compound 1T-TaS2 is shown to provide a demonstration of this effect.

Friction anomalies at first-order transition spinodals: 1T-TaS2 / Panizon, Emanuele; Marx, Torben; Dietzel, Dirk; Pellegrini, Franco; Santoro, Giuseppe E.; Schirmeisen, Andre; Tosatti, Erio. - In: NEW JOURNAL OF PHYSICS. - ISSN 1367-2630. - 20:2(2018), pp. 1-9. [10.1088/1367-2630/aaac00]

Friction anomalies at first-order transition spinodals: 1T-TaS2

Panizon, Emanuele;Pellegrini, Franco;Santoro, Giuseppe E.;Tosatti, Erio
2018-01-01

Abstract

Revealing phase transitions of solids through mechanical anomalies in the friction of nanotips sliding on their surfaces, a successful approach for continuous transitions, is still an unexplored tool for first-order ones. Owing to slow nucleation, first-order structural transformations occur with hysteresis, comprised between two spinodal temperatures where, on both sides of the thermodynamic transition, one or the other metastable free energy branches terminates. The spinodal transformation, a collective one-shot event without heat capacity anomaly, is easy to trigger by a weak external perturbation. Here we show that even the gossamer mechanical action of an AFM-tip can locally act as a trigger, narrowly preempting the spontaneous spinodal transformation, and making it observable as a nanofrictional anomaly. Confirming this expectation, the CCDW-NCCDW first-order transition of the important layer compound 1T-TaS2 is shown to provide a demonstration of this effect.
2018
20
2
1
9
023033
10.1088/1367-2630/aaac00
http://iopscience.iop.org/article/10.1088/1367-2630/aaac00/pdf
Panizon, Emanuele; Marx, Torben; Dietzel, Dirk; Pellegrini, Franco; Santoro, Giuseppe E.; Schirmeisen, Andre; Tosatti, Erio
File in questo prodotto:
File Dimensione Formato  
Panizon_NJP18.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.91 MB
Formato Adobe PDF
1.91 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/87919
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact