We show clear evidence of a quadratic speedup of a quantum annealing (QA) Schrödinger dynamics over a Glauber master equation simulated annealing (SA) for a random Ising model in one dimension, via an equal-footing exact deterministic dynamics of the Jordan-Wigner fermionized problems. This is remarkable, in view of the arguments of H. G. Katzgraber et al. [Phys. Rev. X 4, 021008 (2014)2160-330810.1103/PhysRevX.4.021008], since SA does not encounter any phase transition, while QA does. We also find a second remarkable result: that a "quantum-inspired" imaginary-time Schrödinger QA provides a further exponential speedup, i.e., an asymptotic residual error decreasing as a power law τ-μ of the annealing time τ.

Quantum annealing speedup over simulated annealing on random Ising chains / Zanca, Tommaso; Santoro, Giuseppe E.. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 93:22(2016), pp. 1-6. [10.1103/PhysRevB.93.224431]

Quantum annealing speedup over simulated annealing on random Ising chains

Zanca, Tommaso;Santoro, Giuseppe E.
2016-01-01

Abstract

We show clear evidence of a quadratic speedup of a quantum annealing (QA) Schrödinger dynamics over a Glauber master equation simulated annealing (SA) for a random Ising model in one dimension, via an equal-footing exact deterministic dynamics of the Jordan-Wigner fermionized problems. This is remarkable, in view of the arguments of H. G. Katzgraber et al. [Phys. Rev. X 4, 021008 (2014)2160-330810.1103/PhysRevX.4.021008], since SA does not encounter any phase transition, while QA does. We also find a second remarkable result: that a "quantum-inspired" imaginary-time Schrödinger QA provides a further exponential speedup, i.e., an asymptotic residual error decreasing as a power law τ-μ of the annealing time τ.
2016
93
22
1
6
224431
https://arxiv.org/abs/1511.01906
Zanca, Tommaso; Santoro, Giuseppe E.
File in questo prodotto:
File Dimensione Formato  
Zanca_PRB16.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 576.33 kB
Formato Adobe PDF
576.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/87947
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact