We investigate some geometric properties of the real algebraic variety Δ of symmetric matrices with repeated eigenvalues. We explicitly compute the volume of its intersection with the sphere and prove a Eckart–Young–Mirsky-type theorem for the distance function from a generic matrix to points in Δ. We exhibit connections of our study to real algebraic geometry (computing the Euclidean distance degree of Δ) and random matrix theory.

On the geometry of the set of symmetric matrices with repeated eigenvalues / Breiding, Paul; Kozhasov, Khazhgali; Lerario, Antonio. - In: ARNOLD MATHEMATICAL JOURNAL. - ISSN 2199-6792. - 4:3-4(2018), pp. 423-443. [10.1007/s40598-018-0095-0]

On the geometry of the set of symmetric matrices with repeated eigenvalues

Lerario, Antonio
2018

Abstract

We investigate some geometric properties of the real algebraic variety Δ of symmetric matrices with repeated eigenvalues. We explicitly compute the volume of its intersection with the sphere and prove a Eckart–Young–Mirsky-type theorem for the distance function from a generic matrix to points in Δ. We exhibit connections of our study to real algebraic geometry (computing the Euclidean distance degree of Δ) and random matrix theory.
4
3-4
423
443
Breiding, Paul; Kozhasov, Khazhgali; Lerario, Antonio
File in questo prodotto:
File Dimensione Formato  
symmetric.pdf

accesso aperto

Descrizione: Open Access
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 551.29 kB
Formato Adobe PDF
551.29 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/87959
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact