We initiate the study of average intersection theory in real Grassmannians. We define the expected degree edegG.k; n/ of the real Grassmannian G.k; n/ as the average number of real k-planes meeting nontrivially k.n - k/ random subspaces of Rn, all of dimension n - k, where these subspaces are sampled uniformly and independently from G.n - k; n/. We express edegG.k; n/ in terms of the volume of an invariant convex body in the tangent space to the Grassmannian, and prove that for fixed k ≥ 2 and n → 1, (Formula Presented).

Probabilistic Schubert calculus / Bürgisser, Peter; Lerario, Antonio. - In: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK. - ISSN 0075-4102. - 760:(2020), pp. 1-58. [10.1515/crelle-2018-0009]

Probabilistic Schubert calculus

Lerario, Antonio
2020-01-01

Abstract

We initiate the study of average intersection theory in real Grassmannians. We define the expected degree edegG.k; n/ of the real Grassmannian G.k; n/ as the average number of real k-planes meeting nontrivially k.n - k/ random subspaces of Rn, all of dimension n - k, where these subspaces are sampled uniformly and independently from G.n - k; n/. We express edegG.k; n/ in terms of the volume of an invariant convex body in the tangent space to the Grassmannian, and prove that for fixed k ≥ 2 and n → 1, (Formula Presented).
2020
760
1
58
https://arxiv.org/abs/1612.06893
Bürgisser, Peter; Lerario, Antonio
File in questo prodotto:
File Dimensione Formato  
.pdf

Open Access dal 04/05/2019

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 663.96 kB
Formato Adobe PDF
663.96 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/87963
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact