We initiate the study of average intersection theory in real Grassmannians. We define the expected degree edegG.k; n/ of the real Grassmannian G.k; n/ as the average number of real k-planes meeting nontrivially k.n - k/ random subspaces of Rn, all of dimension n - k, where these subspaces are sampled uniformly and independently from G.n - k; n/. We express edegG.k; n/ in terms of the volume of an invariant convex body in the tangent space to the Grassmannian, and prove that for fixed k ≥ 2 and n → 1, (Formula Presented).
Probabilistic Schubert calculus / Bürgisser, Peter; Lerario, Antonio. - In: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK. - ISSN 0075-4102. - 760:(2020), pp. 1-58. [10.1515/crelle-2018-0009]
Probabilistic Schubert calculus
Lerario, Antonio
2020-01-01
Abstract
We initiate the study of average intersection theory in real Grassmannians. We define the expected degree edegG.k; n/ of the real Grassmannian G.k; n/ as the average number of real k-planes meeting nontrivially k.n - k/ random subspaces of Rn, all of dimension n - k, where these subspaces are sampled uniformly and independently from G.n - k; n/. We express edegG.k; n/ in terms of the volume of an invariant convex body in the tangent space to the Grassmannian, and prove that for fixed k ≥ 2 and n → 1, (Formula Presented).File | Dimensione | Formato | |
---|---|---|---|
.pdf
Open Access dal 04/05/2019
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
663.96 kB
Formato
Adobe PDF
|
663.96 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.