Angle-resolved photoemission spectroscopy allows one to visualize in momentum space the probability weight maps of electrons subtracted from molecules deposited on a substrate. The interpretation of these maps usually relies on the plane wave approximation through the Fourier transform of single particle orbitals obtained from density functional theory. Here we propose a first-principle many-body approach based on quantum Monte Carlo (QMC) to directly calculate the quasi-particle wave functions (also known as Dyson orbitals) of molecules in momentum space. The comparison between these correlated QMC images and their single particle counterpart highlights features that arise from many-body effects. We test the QMC approach on the linear C2H2, CO2, and N2 molecules, for which only small amplitude remodulations are visible. Then, we consider the case of the pentacene molecule, focusing on the relationship between the momentum space features and the real space quasi-particle orbital. Eventually, we verify the correlation effects present in the metal CuCl42- planar complex.
Angle-resolved photoemission spectroscopy from first-principles quantum Monte Carlo / Barborini, Matteo; Sorella, Sandro; Rontani, Massimo; Corni, Stefano. - In: THE JOURNAL OF CHEMICAL PHYSICS. - ISSN 0021-9606. - 149:15(2018), pp. 1-11. [10.1063/1.5038864]
Angle-resolved photoemission spectroscopy from first-principles quantum Monte Carlo
Barborini, Matteo
Membro del Collaboration group
;Sorella, SandroMembro del Collaboration group
;Corni, StefanoMembro del Collaboration group
2018-01-01
Abstract
Angle-resolved photoemission spectroscopy allows one to visualize in momentum space the probability weight maps of electrons subtracted from molecules deposited on a substrate. The interpretation of these maps usually relies on the plane wave approximation through the Fourier transform of single particle orbitals obtained from density functional theory. Here we propose a first-principle many-body approach based on quantum Monte Carlo (QMC) to directly calculate the quasi-particle wave functions (also known as Dyson orbitals) of molecules in momentum space. The comparison between these correlated QMC images and their single particle counterpart highlights features that arise from many-body effects. We test the QMC approach on the linear C2H2, CO2, and N2 molecules, for which only small amplitude remodulations are visible. Then, we consider the case of the pentacene molecule, focusing on the relationship between the momentum space features and the real space quasi-particle orbital. Eventually, we verify the correlation effects present in the metal CuCl42- planar complex.File | Dimensione | Formato | |
---|---|---|---|
Angle_Barborini.pdf
Open Access dal 17/10/2019
Descrizione: article
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
5.73 MB
Formato
Adobe PDF
|
5.73 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.