In this work, we adapt the formalism of the dynamical vertex approximation (DΓA), a diagrammatic approach including many-body correlations beyond the dynamical mean-field theory, to the case of attractive on-site interactions. We start by exploiting the ladder approximation of the DΓA scheme, in order to derive the corresponding equations for the nonlocal self-energy and vertex functions of the attractive Hubbard model. Second, we prove the validity of our derivation by showing that the results obtained in the particle-hole symmetric case fully preserve the exact mapping between the attractive and the repulsive models. It will be shown how this property can be related to the structure of the ladders, which makes our derivation applicable for any approximation scheme based on ladder diagrams. Finally, we apply our DΓA algorithm to the attractive Hubbard model in three dimensions, for different fillings and interaction values. Specifically, we focus on the parameters region in the proximity of the second-order transition to the superconducting and charge-density wave phases, respectively, and calculate (i) their phase-diagrams, (ii) their critical behavior, as well as (iii) the effects of the strong nonlocal correlations on the single-particle properties.

Dynamical vertex approximation for the attractive Hubbard model / Del Re, Lorenzo; Capone, Massimo; Toschi, Alessandro. - In: PHYSICAL REVIEW. B. - ISSN 2469-9969. - 99:4(2019), pp. 1-13. [10.1103/PhysRevB.99.045137]

Dynamical vertex approximation for the attractive Hubbard model

Del Re, Lorenzo;Capone, Massimo;Toschi, Alessandro
2019-01-01

Abstract

In this work, we adapt the formalism of the dynamical vertex approximation (DΓA), a diagrammatic approach including many-body correlations beyond the dynamical mean-field theory, to the case of attractive on-site interactions. We start by exploiting the ladder approximation of the DΓA scheme, in order to derive the corresponding equations for the nonlocal self-energy and vertex functions of the attractive Hubbard model. Second, we prove the validity of our derivation by showing that the results obtained in the particle-hole symmetric case fully preserve the exact mapping between the attractive and the repulsive models. It will be shown how this property can be related to the structure of the ladders, which makes our derivation applicable for any approximation scheme based on ladder diagrams. Finally, we apply our DΓA algorithm to the attractive Hubbard model in three dimensions, for different fillings and interaction values. Specifically, we focus on the parameters region in the proximity of the second-order transition to the superconducting and charge-density wave phases, respectively, and calculate (i) their phase-diagrams, (ii) their critical behavior, as well as (iii) the effects of the strong nonlocal correlations on the single-particle properties.
2019
99
4
1
13
045137
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.045137
https://arxiv.org/abs/1805.05194
Del Re, Lorenzo; Capone, Massimo; Toschi, Alessandro
File in questo prodotto:
File Dimensione Formato  
1805.05194.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF Visualizza/Apri
PhysRevB.99.045137.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 728.58 kB
Formato Adobe PDF
728.58 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/88202
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 24
social impact