We address the problem of reconstructing the phase-space distribution function for an extended collisionless system, with known density profile and in equilibrium within an axisymmetric gravitational potential. Assuming that it depends on only two integrals of motion, namely the energy and the component of the angular momentum along the axis of symmetry Lz, there is a one-to-one correspondence between the density profile and the component of the distribution function that is even in Lz, as well as between the weighted azimuthal velocity profile and the odd component. This inversion procedure was originally proposed by Lynden-Bell and later refined in its numerical implementation by Hunter and Qian; after overcoming a technical difficulty, we apply it here for the first time in presence of a strongly flattened component, as a novel approach of extracting the phase-space distribution function for dark matter particles in the halo of spiral galaxies. We compare results obtained for realistic axisymmetric models to those in the spherical symmetric limit as assumed in previous analyses, showing the rather severe shortcomings in the latter. We then apply the scheme to the Milky Way and discuss the implications for the direct dark matter searches. In particular, we reinterpret the null results of the Xenon1T experiment for spin-(in)dependent interactions and make predictions for the annual modulation of the signal for a set of axisymmetric models, including a self-consistently defined corotating halo.

Two-integral distribution functions in axisymmetric galaxies: Implications for dark matter searches / Petač, Mihael; Ullio, Piero. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 99:4(2019), pp. 1-20. [10.1103/PhysRevD.99.043003]

Two-integral distribution functions in axisymmetric galaxies: Implications for dark matter searches

Petač, Mihael;Ullio, Piero
2019

Abstract

We address the problem of reconstructing the phase-space distribution function for an extended collisionless system, with known density profile and in equilibrium within an axisymmetric gravitational potential. Assuming that it depends on only two integrals of motion, namely the energy and the component of the angular momentum along the axis of symmetry Lz, there is a one-to-one correspondence between the density profile and the component of the distribution function that is even in Lz, as well as between the weighted azimuthal velocity profile and the odd component. This inversion procedure was originally proposed by Lynden-Bell and later refined in its numerical implementation by Hunter and Qian; after overcoming a technical difficulty, we apply it here for the first time in presence of a strongly flattened component, as a novel approach of extracting the phase-space distribution function for dark matter particles in the halo of spiral galaxies. We compare results obtained for realistic axisymmetric models to those in the spherical symmetric limit as assumed in previous analyses, showing the rather severe shortcomings in the latter. We then apply the scheme to the Milky Way and discuss the implications for the direct dark matter searches. In particular, we reinterpret the null results of the Xenon1T experiment for spin-(in)dependent interactions and make predictions for the annual modulation of the signal for a set of axisymmetric models, including a self-consistently defined corotating halo.
99
4
1
20
043003
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.043003
https://arxiv.org/abs/1812.01531
Petač, Mihael; Ullio, Piero
File in questo prodotto:
File Dimensione Formato  
1812.01531.pdf

accesso aperto

Descrizione: articolo in versione bozza finale dopo referraggio
Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11767/88380
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact