The upcoming LISA mission offers the unique opportunity to study the Milky Way through gravitational wave radiation from Galactic binaries. Among the variety of Galactic gravitational wave sources, LISA is expected to individually resolve signals from ∼105 ultra-compact double white dwarf (DWD) binaries. DWDs detected by LISA will be distributed across the Galaxy, including regions that are hardly accessible to electromagnetic observations such as the inner part of the Galactic disc, the bulge and beyond. We quantitatively show that the large number of DWD detections will allow us to use these systems as tracers of the Milky Way potential. We demonstrate that density profiles of DWDs detected by LISA may provide constraints on the scale length parameters of the baryonic components that are both accurate and precise, with statistical errors of a few percent to 10 percent level. Furthermore, the LISA sample is found to be sufficient to disentangle between different (commonly used) disc profiles, by well covering the disc out to sufficiently large radii. Finally, up to ∼80 DWDs can be detected through both electromagnetic and gravitational wave radiation. This enables multi-messenger astronomy with DWD binaries and allows one to extract their physical properties using both probes. We show that fitting the Galactic rotation curve constructed using distances inferred from gravitational waves {\it and} proper motions from optical observations yield a unique and competitive estimate of the bulge mass. Instead robust results for the stellar disc mass are contingent upon knowledge of the Dark Matter content.

A multimessenger study of the Milky Way’s stellar disc and bulge with LISA, Gaia, and LSST / Korol, V.; Rossi, E. M.; Barausse, E.. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - 483:4(2019), pp. 5518-5533. [10.1093/mnras/sty3440]

A multimessenger study of the Milky Way’s stellar disc and bulge with LISA, Gaia, and LSST

Barausse, E.
2019

Abstract

The upcoming LISA mission offers the unique opportunity to study the Milky Way through gravitational wave radiation from Galactic binaries. Among the variety of Galactic gravitational wave sources, LISA is expected to individually resolve signals from ∼105 ultra-compact double white dwarf (DWD) binaries. DWDs detected by LISA will be distributed across the Galaxy, including regions that are hardly accessible to electromagnetic observations such as the inner part of the Galactic disc, the bulge and beyond. We quantitatively show that the large number of DWD detections will allow us to use these systems as tracers of the Milky Way potential. We demonstrate that density profiles of DWDs detected by LISA may provide constraints on the scale length parameters of the baryonic components that are both accurate and precise, with statistical errors of a few percent to 10 percent level. Furthermore, the LISA sample is found to be sufficient to disentangle between different (commonly used) disc profiles, by well covering the disc out to sufficiently large radii. Finally, up to ∼80 DWDs can be detected through both electromagnetic and gravitational wave radiation. This enables multi-messenger astronomy with DWD binaries and allows one to extract their physical properties using both probes. We show that fitting the Galactic rotation curve constructed using distances inferred from gravitational waves {\it and} proper motions from optical observations yield a unique and competitive estimate of the bulge mass. Instead robust results for the stellar disc mass are contingent upon knowledge of the Dark Matter content.
483
4
5518
5533
http://doi.org/10.1093/mnras/sty3440
https://academic.oup.com/mnras/article/483/4/5518/5251998
Korol, V.; Rossi, E. M.; Barausse, E.
File in questo prodotto:
File Dimensione Formato  
Korol_Rossi.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11767/89652
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 26
social impact