Second variation of a smooth optimal control problem at a regular extremal is a symmetric Fredholm operator. We study the asymptotics of the spectrum of this operator and give an explicit expression for its determinant in terms of solutions of the Jacobi equation. In the case of the least action principle for the harmonic oscillator, we obtain the classical Euler identity n=1(1 - x(2)/(n)(2)) = sin x/x. The general case may serve as a rich source of new nice identities.

Spectrum of the Second Variation / Agrachev, A.. - In: PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS. - ISSN 0081-5438. - 304:1(2019), pp. 26-41. [10.1134/S0081543819010036]

Spectrum of the Second Variation

Agrachev, A.
2019

Abstract

Second variation of a smooth optimal control problem at a regular extremal is a symmetric Fredholm operator. We study the asymptotics of the spectrum of this operator and give an explicit expression for its determinant in terms of solutions of the Jacobi equation. In the case of the least action principle for the harmonic oscillator, we obtain the classical Euler identity n=1(1 - x(2)/(n)(2)) = sin x/x. The general case may serve as a rich source of new nice identities.
304
1
26
41
https://link.springer.com/article/10.1134/S0081543819010036
https://arxiv.org/abs/1807.10527
Agrachev, A.
File in questo prodotto:
File Dimensione Formato  
determin.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 361.6 kB
Formato Adobe PDF
361.6 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/89988
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact