An in vitro system of electrical stimulation was used to explore whether an innovative “noisy” stimulation protocol derived from human electromyographic recordings (EMGstim)could promote muscle regeneration. EMGstim was delivered to cultured mouse myofibers isolated from Flexor Digitorum Brevis, preserving their satellite cells. In response to EMGstim, immunostaining for the myogenic regulatory factor myogenin, revealed an increased percentage of elongated myogenin-positive cells surrounding the myofibers. Conditioned medium collected from EMGstim-treated cell cultures, promoted satellite cells differentiation in unstimulated myofiber cell cultures, suggesting that extracellular soluble factors could mediate the process. Interestingly, the myogenic effect of EMGstim was mimicked by exogenously applied ATP (0.1 μM), reduced by the ATP diphosphohydrolase apyrase and prevented by blocking endogenous ATP release with carbenoxolone. In conclusion, our results show that “noisy” electrical stimulations favor muscle progenitor cell differentiation most likely via the release of endogenous ATP from contracting myofibres. Our data also suggest that “noisy” stimulation protocols could be potentially more efficient than regular stimulations to promote in vivo muscle regeneration after traumatic injury or in neuropathological diseases.
A “noisy” electrical stimulation protocol favors muscle regeneration in vitro through release of endogenous ATP / Bosutti, A.; Bernareggi, A.; Massaria, G.; D'Andrea, P.; Taccola, G.; Lorenzon, P.; Sciancalepore, M.. - In: EXPERIMENTAL CELL RESEARCH. - ISSN 0014-4827. - 381:1(2019), pp. 121-128. [10.1016/j.yexcr.2019.05.012]
A “noisy” electrical stimulation protocol favors muscle regeneration in vitro through release of endogenous ATP
Taccola G.;
2019-01-01
Abstract
An in vitro system of electrical stimulation was used to explore whether an innovative “noisy” stimulation protocol derived from human electromyographic recordings (EMGstim)could promote muscle regeneration. EMGstim was delivered to cultured mouse myofibers isolated from Flexor Digitorum Brevis, preserving their satellite cells. In response to EMGstim, immunostaining for the myogenic regulatory factor myogenin, revealed an increased percentage of elongated myogenin-positive cells surrounding the myofibers. Conditioned medium collected from EMGstim-treated cell cultures, promoted satellite cells differentiation in unstimulated myofiber cell cultures, suggesting that extracellular soluble factors could mediate the process. Interestingly, the myogenic effect of EMGstim was mimicked by exogenously applied ATP (0.1 μM), reduced by the ATP diphosphohydrolase apyrase and prevented by blocking endogenous ATP release with carbenoxolone. In conclusion, our results show that “noisy” electrical stimulations favor muscle progenitor cell differentiation most likely via the release of endogenous ATP from contracting myofibres. Our data also suggest that “noisy” stimulation protocols could be potentially more efficient than regular stimulations to promote in vivo muscle regeneration after traumatic injury or in neuropathological diseases.File | Dimensione | Formato | |
---|---|---|---|
Exp Cell Research, 2019.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
1.46 MB
Formato
Adobe PDF
|
1.46 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
PREPRINT_Bosutti et al., 2019.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
665.35 kB
Formato
Adobe PDF
|
665.35 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.