We study the dc conductivity of iron-based superconductors within the orbital-selective spin fluctuation scenario. Within this approach, the anisotropy of spin fluctuations below the spin-nematic transition at TS is also responsible for the orbital ordering, induced by nematic self-energy corrections to the quasiparticle dispersion. As a consequence, the anisotropy of the dc conductivity below TS is determined not only by the anisotropy of the scattering rates as expected within a spin-nematic scenario, but also by the modification of the Fermi velocity due to the orbital reconstruction. More interestingly, it turns out that these two effects contribute to the dc-conductivity anisotropy with opposite signs. By using realistic band-structure parameters we compute the conductivity anisotropy for both 122 and FeSe compounds, discussing the possible origin of the different dc-conductivity anisotropy observed experimentally in these two families of iron-based superconductors.
Anisotropy of the dc conductivity due to orbital-selective spin fluctuations in the nematic phase of iron superconductors / Fernandez-Martin, R.; Fanfarillo, L.; Benfatto, L.; Valenzuela, B.. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 99:15(2019), pp. 1-14. [10.1103/PhysRevB.99.155117]
Anisotropy of the dc conductivity due to orbital-selective spin fluctuations in the nematic phase of iron superconductors
Fanfarillo L.
;
2019-01-01
Abstract
We study the dc conductivity of iron-based superconductors within the orbital-selective spin fluctuation scenario. Within this approach, the anisotropy of spin fluctuations below the spin-nematic transition at TS is also responsible for the orbital ordering, induced by nematic self-energy corrections to the quasiparticle dispersion. As a consequence, the anisotropy of the dc conductivity below TS is determined not only by the anisotropy of the scattering rates as expected within a spin-nematic scenario, but also by the modification of the Fermi velocity due to the orbital reconstruction. More interestingly, it turns out that these two effects contribute to the dc-conductivity anisotropy with opposite signs. By using realistic band-structure parameters we compute the conductivity anisotropy for both 122 and FeSe compounds, discussing the possible origin of the different dc-conductivity anisotropy observed experimentally in these two families of iron-based superconductors.File | Dimensione | Formato | |
---|---|---|---|
1804.07293(1).pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Documento in Post-print
Licenza:
Non specificato
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.