The increasing engineering of carbon-based nanomaterials as components of neuro-regenerative interfaces is motivated by their dimensional compatibility with subcellular compartments of excitable cells, such as axons and synapses. In neuroscience applications, carbon nanotubes (CNTs) have been used to improve electronic device performance by exploiting their physical properties. Besides, when manufactured to interface neuronal networks formation in vitro, CNT carpets have shown their unique ability to potentiate synaptic networks formation and function. Due to the low optical transparency of CNTs films, further developments of these materials in neural prosthesis fabrication or in implementing interfacing devices to be paired with in vivo imaging or in vitro optogenetic approaches are currently limited. In the present work, we exploit a new method to fabricate CNTs by growing them on a fused silica surface, which results in a transparent CNT-based substrate (tCNTs). We show that tCNTs favour dissociated primary neurons network formation and function, an effect comparable to the one observed for their dark counterparts. We further adopt tCNTs to support the growth of intact or lesioned Entorhinal-Hippocampal Complex organotypic cultures (EHCs). Through immunocytochemistry and electrophysiological field potential recordings, we show here that tCNTs platforms are suitable substrates for the growth of EHCs and we unmask their ability to significantly increase the signal synchronization and fibre sprouting between the cortex and the hippocampus with respect to Controls. tCNTs transparency and ability to enhance recovery of lesioned brain cultures, make them optimal candidates to implement implantable devices in regenerative medicine and tissue engineering. This article is protected by copyright. All rights reserved.
Transparent carbon nanotubes promote the outgrowth of enthorino-dentate projections in lesioned organ slice cultures / Pampaloni, Niccolò P; Rago, Ilaria; Calaresu, Ivo; Cozzarini, Luca; Casalis, Loredana; Goldoni, Andrea; Ballerini, Laura; Scaini, Denis. - In: DEVELOPMENTAL NEUROBIOLOGY. - ISSN 1932-8451. - 80:9-10(2020), pp. 316-331. [10.1002/dneu.22711]
Transparent carbon nanotubes promote the outgrowth of enthorino-dentate projections in lesioned organ slice cultures
Pampaloni, Niccolò P;Calaresu, Ivo;Ballerini, Laura;Scaini, Denis
2020-01-01
Abstract
The increasing engineering of carbon-based nanomaterials as components of neuro-regenerative interfaces is motivated by their dimensional compatibility with subcellular compartments of excitable cells, such as axons and synapses. In neuroscience applications, carbon nanotubes (CNTs) have been used to improve electronic device performance by exploiting their physical properties. Besides, when manufactured to interface neuronal networks formation in vitro, CNT carpets have shown their unique ability to potentiate synaptic networks formation and function. Due to the low optical transparency of CNTs films, further developments of these materials in neural prosthesis fabrication or in implementing interfacing devices to be paired with in vivo imaging or in vitro optogenetic approaches are currently limited. In the present work, we exploit a new method to fabricate CNTs by growing them on a fused silica surface, which results in a transparent CNT-based substrate (tCNTs). We show that tCNTs favour dissociated primary neurons network formation and function, an effect comparable to the one observed for their dark counterparts. We further adopt tCNTs to support the growth of intact or lesioned Entorhinal-Hippocampal Complex organotypic cultures (EHCs). Through immunocytochemistry and electrophysiological field potential recordings, we show here that tCNTs platforms are suitable substrates for the growth of EHCs and we unmask their ability to significantly increase the signal synchronization and fibre sprouting between the cortex and the hippocampus with respect to Controls. tCNTs transparency and ability to enhance recovery of lesioned brain cultures, make them optimal candidates to implement implantable devices in regenerative medicine and tissue engineering. This article is protected by copyright. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
2019 – Transparent carbon nanotubes promote the outgrowth of enthorino-dentate projections in lesioned organ slice cultures.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
1.65 MB
Formato
Adobe PDF
|
1.65 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
DNEU-00038-2019 R1_ main text-1.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
225.01 kB
Formato
Adobe PDF
|
225.01 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.